2 resultados para Oligonucleotide Array Sequence Analysis

em Universidad Politécnica de Madrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

El trigo blando (Triticum aestivum ssp vulgare L., AABBDD, 2n=6x=42) presenta propiedades viscoélasticas únicas debidas a la presencia en la harina de las prolaminas: gluteninas y gliadinas. Ambos tipos de proteínas forman parte de la red de gluten. Basándose en la movilidad en SDS-PAGE, las gluteninas se clasifican en dos grupos: gluteninas de alto peso molecular (HMW-GS) y gluteninas de bajo peso molecular (LMW-GS). Los genes que codifican para las HMW-GS se encuentran en tres loci del grupo 1 de cromosomas: Glu-A1, Glu-B1 y Glu-D1. Cada locus codifica para uno o dos polipéptidos o subunidades. La variación alélica de las HMW-GS es el principal determinante de de la calidad harino-panadera y ha sido ampliamente estudiado tanto a nivel de proteína como de ADN. El conocimiento de estas proteínas ha contribuido sustancialmente al progreso de los programas de mejora para la calidad del trigo. Comparadas con las HMW-GS, las LMW-GS forman una familia proteica mucho más compleja. La mayoría de los genes LMW se localizan en el grupo 1 de cromosomas en tres loci: Glu-A3, Glu-B3 y Glu-D3 que se encuentran estrechamente ligados a los loci que codifican para gliadinas. El número de copias de estos genes ha sido estimado entre 10-40 en trigo hexaploide, pero el número exacto aún se desconoce debido a la ausencia de un método eficiente para diferenciar los miembros de esta familia multigénica. La nomenclatura de los alelos LMW-GS por electroforesis convencional es complicada, y diferentes autores asignan distintos alelos a la misma variedad lo que dificulta aún más el estudio de esta compleja familia. El uso de marcadores moleculares para la discriminación de genes LMW, aunque es una tarea dificil, puede ser muy útil para los programas de mejora. El objetivo de este trabajo ha sido profundizar en la relación entre las gluteninas y la calidad panadera y desarrollar marcadores moleculares que permitan ayudar en la correcta clasificación de HMW-GS y LMW-GS. Se han obtenido dos poblaciones de líneas avanzadas F4:6 a partir de los cruzamientos entre las variedades ‘Tigre’ x ‘Gazul’ y ‘Fiel’ x ‘Taber’, seleccionándose para los análisis de calidad las líneas homogéneas para HMW-GS, LMW-GS y gliadinas. La determinación alélica de HMW-GS se llevó a cabo por SDS-PAGE, y se complementó con análisis moleculares, desarrollándose un nuevo marcador de PCR para diferenciar entre las subunidades Bx7 y Bx7*del locus Glu-B1. Resumen 2 La determinación alélica para LMW-GS se llevó a cabo mediante SDS-PAGE siguiendo distintas nomenclaturas y utilizando variedades testigo para cada alelo. El resultado no fue concluyente para el locus Glu-B3, así que se recurrió a marcadores moleculares. El ADN de los parentales y de los testigos se amplificó usando cebadores diseñados en regiones conservadas de los genes LMW y fue posteriormente analizado mediante electroforesis capilar. Los patrones de amplificación obtenidos fueron comparados entre las distintas muestras y permitieron establecer una relación con los alelos de LMW-GS. Con este método se pudo aclarar la determinación alélica de este locus para los cuatro parentales La calidad de la harina fue testada mediante porcentaje de contenido en proteína, prueba de sedimentación (SDSS) y alveógrafo de Chopin (parámetros P, L, P/L y W). Los valores fueron analizados en relación a la composición en gluteninas. Las líneas del cruzamiento ‘Fiel’ x ‘Taber’ mostraron una clara influencia del locus Glu-A3 en la variación de los valores de SDSS. Las líneas que llevaban el nuevo alelo Glu-A3b’ presentaron valores significativamente mayores que los de las líneas con el alelo Glu-A3f. En las líneas procedentes del cruzamiento ‘Tigre ’x ‘Gazul’, los loci Glu-B1 y Glu-B3 loci mostraron ambos influencia en los parámetros de calidad. Los resultados indicaron que: para los valores de SDSS y P, las líneas con las HMW-GS Bx7OE+By8 fueron significativamente mejores que las líneas con Bx17+By18; y las líneas que llevaban el alelo Glu-B3ac presentaban valores de P significativamente superiores que las líneas con el alelo Glu-B3ad y significativamente menores para los valores de L . El análisis de los valores de calidad en relación a los fragmentos LMW amplificados, reveló un efecto significativo entre dos fragmentos (2-616 y 2-636) con los valores de P. La presencia del fragmento 2-636 estaba asociada a valores de P mayores. Estos fragmentos fueron clonados y secuenciados, confirmándose que correspondían a genes del locus Glu-B3. El estudio de la secuencia reveló que la diferencia entre ambos se hallaba en algunos SNPs y en una deleción de 21 nucleótidos que en la proteína correspondería a un InDel de un heptapéptido en la región repetida de la proteína. En este trabajo, la utilización de líneas que difieren en el locus Glu-B3 ha permitido el análisis de la influencia de este locus (el peor caracterizado hasta la fecha) en la calidad panadera. Además, se ha validado el uso de marcadores moleculares en la determinación alélica de las LMW-GS y su relación con la calidad panadera. Summary 3 Bread wheat (Triticum aestivum ssp vulgare L., AABBDD, 2n=6x=42) flour has unique dough viscoelastic properties conferred by prolamins: glutenins and gliadins. Both types of proteins are cross-linked to form gluten polymers. On the basis of their mobility in SDS-PAGE, glutenins can be classified in two groups: high molecular weight glutenins (HMW-GS) and low molecular weight glutenins (LMW-GS). Genes encoding HMW-GS are located on group 1 chromosomes in three loci: Glu-A1, Glu-B1 and Glu-D1, each one encoding two polypeptides, named subunits. Allelic variation of HMW-GS is the most important determinant for bread making quality, and has been exhaustively studied at protein and DNA level. The knowledge of these proteins has substantially contributed to genetic improvement of bread quality in breeding programs. Compared to HMW-GS, LMW-GS are a much more complex family. Most genes encoded LMW-GS are located on group 1 chromosomes. Glu-A3, Glu-B3 and Glu-D3 loci are closely linked to the gliadin loci. The total gene copy number has been estimated to vary from 10–40 in hexaploid wheat. However, the exact copy number of LMW-GS genes is still unknown, mostly due to lack of efficient methods to distinguish members of this multigene family. Nomenclature of LMW-GS alleles is also unclear, and different authors can assign different alleles to the same variety increasing confusion in the study of this complex family. The use of molecular markers for the discrimination of LMW-GS genes might be very useful in breeding programs, but their wide application is not easy. The objective of this work is to gain insight into the relationship between glutenins and bread quality, and the developing of molecular markers that help in the allele classification of HMW-GS and LMW-GS. Two populations of advanced lines F4:6 were obtained from the cross ‘Tigre’ x ‘Gazul’ and ‘Fiel’ x ‘Taber’. Lines homogeneous for HMW-GS, LMW-GS and gliadins pattern were selected for quality analysis. The allele classification of HMW-GS was performed by SDS-PAGE, and then complemented by PCR analysis. A new PCR marker was developed to undoubtedly differentiate between two similar subunits from Glu-B1 locus, Bx7 and Bx7*. The allele classification of LMW-GS was initially performed by SDS-PAGE following different established nomenclatures and using standard varieties. The results were not completely concluding for Glu-B3 locus, so a molecular marker system was applied. DNA from parental lines and standard varieties was amplified using primers designed in conserved domains of LMW genes and analyzed by capillary electrophoresis. The pattern of amplification products obtained was compared among samples and related to the protein allele classification. It was possible to establish a correspondence between specific amplification products and almost all LMW alleles analyzed. With this method, the allele classification of the four parental lines was clarified. Flour quality of F4:6 advanced lines were tested by protein content, sedimentation test (SDSS) and alveograph (P, L, P/L and W). The values were analyzed in relation to the lines prolamin composition. In the ‘Fiel’ x ‘Taber’ population, Glu-A3 locus showed an influence in SDSS values. Lines carrying new allele Glu-A3b’, presented a significantly higher SDSS value than lines with Glu-A3f allele. In the ‘Tigre ’x ‘Gazul’ population, the Glu-B1 and Glu-B3 loci also showed an effect in quality parameters, in SDSS, and P and L values. Results indicated that: for SDSS and P, lines with Bx7OE+By8 were significantly better than lines with Bx17+By18; lines carrying Glu-B3ac allele had a significantly higher P values than Glu-B3ad allele values. lines with and lower L The analysis of quality parameters and amplified LMW fragments revealed a significant influence of two peaks (2-616 y 2-636) in P values. The presence of 2-636 peak gave higher P values than 2-616. These fragments had been cloned and sequenced and identified as Glu-B3 genes. The sequence analysis revealed that the molecular difference between them was some SNPs and a small deletion of 21 nucleotides that in the protein would produce an InDel of a heptapeptide in the repetitive region. In this work, the analysis of two crosses with differences in Glu-3 composition has made possible to study the influence of LMG-GS in quality parameters. Specifically, the influence of Glu-B3, the most interesting and less studied loci has been possible. The results have shown that Glu-B3 allele composition influences the alveograph parameter P (tenacity). The existence of different molecular variants of Glu-B3 alleles have been assessed by using a molecular marker method. This work supports the use of molecular approaches in the study of the very complex LMW-GS family, and validates their application in the analysis of advanced recombinant lines for quality studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Actualmente, la reducción de materias activas (UE) y la implantación de la nueva Directiva comunitaria 2009/128/ que establece el marco de actuación para conseguir un uso sostenible de los plaguicidas químicos y la preferencia de uso de métodos biológicos, físicos y otros no químicos, obliga a buscar métodos de control menos perjudiciales para el medio ambiente. El control biológico (CB) de enfermedades vegetales empleando agentes de control biológico (ACB) se percibe como una alternativa más segura y con menor impacto ambiental, bien solos o bien como parte de una estrategia de control integrado. El aislado 212 de Penicillium oxalicum (PO212) (ATCC 201888) fue aislado originalmente de la micoflora del suelo en España y ha demostrado ser un eficaz ACB frente a la marchitez vascular del tomate. Una vez identificado y caracterizado el ACB se inició el periodo de desarrollo del mismo poniendo a punto un método de producción en masa de sus conidias. Tras lo cual se inició el proceso de formulación del ACB deshidratando las conidias para su preservación durante un período de tiempo mayor mediante lecho fluido. Finalmente, se han desarrollado algunos formulados que contienen de forma individual diferentes aditivos que han alargado su viabilidad, estabilidad y facilitado su manejo y aplicación. Sin embargo, es necesario seguir trabajando en la mejora de su eficacia de biocontrol. El primer objetivo de esta Tesis se ha centrado en el estudio de la interacción ACB-patógeno-huésped que permita la actuación de P.oxalicum en diferentes patosistemas. Uno de los primeros puntos que se abordan dentro de este objetivo es el desarrollo de nuevas FORMULACIONES del ACB que incrementen su eficacia frente a la marchitez vascular del tomate. Las conidias formuladas de PO212 se obtuvieron por la adición conjunta de distintos aditivos (mojantes, adherentes o estabilizantes) en dos momentos diferentes del proceso de producción/secado: i) antes del proceso de producción (en la bolsa de fermentación) en el momento de la inoculación de las bolsas de fermentación con conidias de PO212 o ii) antes del secado en el momento de la resuspensión de las conidias tras su centrifugación. De las 22 nuevas formulaciones desarrolladas y evaluadas en plantas de tomate en ensayos en invernadero, seis de ellas (FOR22, FOR25, FOR32, FOR35, FOR36 y FOR37) mejoran significativamente (P=0,05) el control de la marchitez vascular del tomate con respecto al obtenido con las conidias secas de P.oxalicum sin aditivos (CSPO) o con el fungicida Bavistin. Los formulados que mejoran la eficacia de las conidias secas sin aditivos son aquellos que contienen como humectantes alginato sódico en fermentación, seguido de aquellos que contienen glicerol como estabilizante en fermentación, y metil celulosa y leche desnatada como adherentes antes del secado. Además, el control de la marchitez vascular del tomate por parte de los formulados de P. oxalicum está relacionado con la fecha de inicio de la enfermedad. Otra forma de continuar mejorando la eficacia de biocontrol es mejorar la materia activa mediante la SELECCIÓN DE NUEVAS CEPAS de P. oxalicum, las cuales podrían tener diferentes niveles de eficacia. De entre las 28 nuevas cepas de P. oxalicum ensayadas en cámara de cultivo, sólo el aislado PO15 muestra el mismo nivel de eficacia que PO212 (62-67% de control) frente a la marchitez vascular del tomate en casos de alta presión de enfermedad. Mientras que, en casos de baja presión de enfermedad todas las cepas de P. oxalicum y sus mezclas demuestran ser eficaces. Finalmente, se estudia ampliar el rango de actuación de este ACB a OTROS HUÉSPEDES Y OTROS PATÓGENOS Y DIFERENTES GRADOS DE VIRULENCIA. En ensayos de eficacia de P. oxalicum frente a aislados de diferente agresividad de Verticillium spp. y Fusarium oxysporum f. sp. lycopersici en plantas de tomate en cámaras de cultivo, se demuestra que la eficacia de PO212 está negativamente correlacionada con el nivel de enfermedad causada por F. oxysporum f. sp. lycopersici pero que no hay ningún efecto diferencial en la reducción de la incidencia ni de la gravedad según la virulencia de los aislados. Sin embargo, en los ensayos realizados con V. dahliae, PO212 causa una mayor reducción de la enfermedad en las plantas inoculadas con aislados de virulencia media. La eficacia de PO212 también era mayor frente a aislados de virulencia media alta de F. oxysporum f. sp. melonis y F. oxysporum f. sp. niveum, en plantas de melón y sandía, respectivamente. En ambos huéspedes se demuestra que la dosis óptima de aplicación del ACB es de 107 conidias de PO212 g-1 de suelo de semillero, aplicada 7 días antes del trasplante. Además, entre 2 y 4 nuevas aplicaciones de PO212 a la raíces de las plantas mediante un riego al terreno de asiento mejoran la eficacia de biocontrol. La eficacia de PO212 no se limita a hongos patógenos vasculares como los citados anteriormente, sino también a otros patógenos como: Phytophthora cactorum, Globodera pallida y G. rostochiensis. PO212 reduce significativamente los síntomas (50%) causados por P. cactorum en plantas de vivero de fresa, tras la aplicación del ACB por inmersión de las raíces antes de su trasplante al suelo de viveros comerciales. Por otra parte, la exposición de los quistes de Globodera pallida y G. rostochiensis (nematodos del quiste de la patata) a las conidias de P. oxalicum, en ensayos in vitro o en microcosmos de suelo, reduce significativamente la capacidad de eclosión de los huevos. Para G. pallida esta reducción es mayor cuando se emplean exudados de raíz de patata del cv. 'Monalisa', que exudados de raíz del cv. 'Desirée'. No hay una reducción significativa en la tasa de eclosión con exudados de raíz de tomate del cv. 'San Pedro'. Para G. rostochiensis la reducción en la tasa de eclosión de los huevos se obtiene con exudados de la raíz de patata del cv. 'Desirée'. El tratamiento con P. oxalicum reduce también significativamente el número de quistes de G. pallida en macetas. Con el fin de optimizar la aplicación práctica de P. oxalicum cepa 212 como tratamiento biológico del suelo, es esencial entender cómo el entorno físico influye en la capacidad de colonización, crecimiento y supervivencia del mismo, así como el posible riesgo que puede suponer su aplicación sobre el resto de los microorganismos del ecosistema. Por ello en este segundo objetivo de esta tesis se estudia la interacción del ACB con el medio ambiente en el cual se aplica. Dentro de este objetivo se evalúa la INFLUENCIA DE LA TEMPERATURA, DISPONIBILIDAD DE AGUA Y PROPIEDADES FÍSICO-QUÍMICAS DE LOS SUELOS (POROSIDAD, TEXTURA, DENSIDAD...) SOBRE LA SUPERVIVENCIA Y EL CRECIMIENTO DE PO212 en condiciones controladas elaborando modelos que permitan predecir el impacto de cada factor ambiental en la supervivencia y crecimiento de P. oxalicum y conocer su capacidad para crecer y sobrevivir en diferentes ambientes. En las muestras de suelo se cuantifica: i) la supervivencia de Penicillium spp. usando el recuento del número de unidades formadoras de colonias en un medio de cultivo semi-selectivo y ii) el crecimiento (biomasa) de PO212 mediante PCR en tiempo real. En los resultados obtenidos se demuestra que P. oxalicum crece y sobrevive mejor en condiciones de sequía independientemente de la temperatura y del tipo de suelo. Si comparamos tipos de suelo P. oxalicum crece y sobrevive en mayor medida en suelos areno-arcillosos con un bajo contenido en materia orgánica, un mayor pH y una menor disponibilidad de fósforo y nitrógeno. La supervivencia y el crecimiento de P. oxalicum se correlaciona de forma negativa con la disponibilidad de agua y de forma positiva con el contenido de materia orgánica. Sólo la supervivencia se correlaciona también positivamente con el pH. Por otro lado se realizan ensayos en suelos de huertos comerciales con diferentes propiedades físico-químicas y diferentes condiciones ambientales para ESTUDIAR EL ESTABLECIMIENTO, SUPERVIVENCIA Y DISPERSIÓN VERTICAL Y MOVILIDAD HORIZONTAL DE PO212. P. oxalicum 212 puede persistir y sobrevivir en esos suelos al menos un año después de su liberación pero a niveles similares a los de otras especies de Penicillium indígenas presentes en los mismos suelos naturales. Además, P. oxalicum 212 muestra una dispersión vertical y movilidad horizontal muy limitada en los diferentes tipos de suelo evaluados. La introducción de P. oxalicum en un ambiente natural no sólo implica su actuación sobre el microorganismo diana, el patógeno, si no también sobre otros microorganismos indígenas. Para EVALUAR EL EFECTO DE LA APLICACIÓN DE P. oxalicum SOBRE LAS POBLACIONES FÚNGICAS INDIGENAS PRESENTES EN EL SUELO de dos huertos comerciales, se analizan mediante electroforesis en gradiente desnaturalizante de poliacrilamida (DGGE) muestras de dichos suelos a dos profundidades (5 y 10 cm) y a cuatro fechas desde la aplicación de P. oxalicum 212 (0, 75, 180 y 365 días). El análisis de la DGGE muestra que las diferencias entre las poblaciones fúngicas se deben significativamente a la fecha de muestreo y son independientes del tratamiento aplicado y de la profundidad a la que se tomen las muestras. Luego, la aplicación del ACB no afecta a la población fúngica de los dos suelos analizados. El análisis de las secuencias de la DGGE confirma los resultados anteriores y permiten identificar la presencia del ACB en los suelos. La presencia de P. oxalicum en el suelo se encuentra especialmente relacionada con factores ambientales como la humedad. Por tanto, podemos concluir que Penicillium oxalicum cepa 212 puede considerarse un óptimo Agente de Control Biológico (ACB), puesto que es ecológicamente competitivo, eficaz para combatir un amplio espectro de enfermedades y no supone un riesgo para el resto de microorganismos fúngicos no diana presentes en el lugar de aplicación. ABSTRACT Currently, reduction of active (EU) and the implementation of the new EU Directive 2009/128 which establishing the framework for action to achieve the sustainable use of chemical pesticides and preference of use of biological, physical and other non-chemical methods, forces to look for control methods less harmful to the environment. Biological control (CB) of plant diseases using biological control agents (BCA) is perceived as a safer alternative and with less environmental impact, either alone or as part of an integrated control strategy. The isolate 212 of Penicillium oxalicum (PO212) (ATCC 201888) was originally isolated from the soil mycoflora in Spain. P. oxalicum is a promising biological control agent for Fusarium wilt and other tomato diseases. Once identified and characterized the BCA, was developed a mass production method of conidia by solid-state fermentation. After determined the process of obtaining a formulated product of the BCA by drying of product by fluid-bed drying, it enables the preservation of the inoculum over a long period of time. Finally, some formulations of dried P. oxalicum conidia have been developed which contain one different additive that have improved their viability, stability and facilitated its handling and application. However, further work is needed to improve biocontrol efficacy. The first objective of this thesis has focused on the study of the interaction BCA- pathogen-host, to allow P.oxalicum to work in different pathosystems. The first point to be addressed in this objective is the development of new FORMULATIONS of BCA which increase their effectiveness against vascular wilt of tomato. PO212 conidial formulations were obtained by the joint addition of various additives (wetting agents, adhesives or stabilizers) at two different points of the production-drying process: i) to substrate in the fermentation bags before the production process, and (ii) to conidial paste obtained after production but before drying. Of the 22 new formulations developed and evaluated in tomato plants in greenhouse tests, six of them (FOR22 , FOR25 , FOR32 , FOR35 , FOR36 and FOR3) improved significantly (P = 0.05) the biocontrol efficacy against tomato wilt with respect to that obtained with dried P.oxalicum conidia without additives (CSPO) or the fungicide Bavistin. The formulations that improve the efficiency of dried conidia without additives are those containing as humectants sodium alginate in the fermentation bags, followed by those containing glycerol as a stabilizer in the fermentation bags, and methylcellulose and skimmed milk as adherents before drying. Moreover, control of vascular wilt of tomatoes by PO212 conidial formulations is related to the date of disease onset. Another way to further improve the effectiveness of biocontrol is to improve the active substance by SELECTION OF NEW STRAINS of P. oxalicum, which may have different levels of effectiveness. Of the 28 new strains of P. oxalicum tested in a culture chamber, only PO15 isolate shows the same effectiveness that PO212 (62-67 % of control) against tomato vascular wilt in cases of high disease pressure. Whereas in cases of low disease pressure all strains of P. oxalicum and its mixtures effective. Finally, we study extend the range of action of this BCA TO OTHER GUESTS AND OTHER PATHOGENS AND DIFFERENT DEGREES OF VIRULENCE. In efficacy trials of P. oxalicum against isolates of different aggressiveness of Verticillium spp. and Fusarium oxysporum f. sp. lycopersici in tomato plants in growth chambers, shows that the efficiency of PO212 is negatively correlated with the level of disease caused by F. oxysporum f. sp. lycopersici. There is not differential effect in reducing the incidence or severity depending on the virulence of isolates. However, PO212 cause a greater reduction of disease in plants inoculated with virulent isolates media of V. dahlia. PO212 efficacy was also higher against isolates of high and average virulence of F. oxysporum f. sp. melonis and F. oxysporum f. sp. niveum in melon and watermelon plants, respectively. In both hosts the optimum dose of the BCA application is 107 conidia PO212 g-1 soil, applied on seedlings 7 days before transplantation into the field. Moreover, the reapplication of PO212 (2-4 times) to the roots by irrigation into the field improve efficiency of biocontrol. The efficacy of PO212 is not limited to vascular pathogens as those mentioned above, but also other pathogens such as Oomycetes (Phytophthora cactorum) and nematodes (Globodera pallida and G. rostochiensis). PO212 significantly reduces symptoms (50 %) caused by P. cactorum in strawberry nursery plants after application of BCA by dipping the roots before transplanting to soil in commercial nurseries. Moreover, the exposure of G. pallida and G. rostochiensis cysts to the conidia of P. oxalicum, in in vitro assays or in soil microcosms significantly reduces hatchability of eggs. The reduction in the rate of G. pallida juveniles hatching was greatest when root diffusates from the `Monalisa´ potato cultivar were used, followed by root diffusates from the `Désirée´ potato cultivar. However, no significant reduction in the rate of G. pallida juveniles hatching was found when root diffusates from the ‘San Pedro” tomato cultivar were used. For G. rostochiensis reduction in the juveniles hatching is obtained from the root diffusates 'Desirée' potato cultivar. Treatment with P. oxalicum also significantly reduces the number of cysts of G. pallida in pots. In order to optimize the practical application of P. oxalicum strain 212 as a biological soil treatment, it is essential to understand how the physical environment influences the BCA colonization, survival and growth, and the possible risk that can cause its application on other microorganisms in the ecosystem of performance. Therefore, the second objective of this thesis is the interaction of the BCA with the environment in which it is applied. Within this objective is evaluated the INFLUENCE OF TEMPERATURE, WATER AVAILABILITY AND PHYSICAL-CHEMICAL PROPERTIES OF SOILS (POROSITY, TEXTURE, DENSITY...) ON SURVIVAL AND GROWTH OF PO212 under controlled conditions to develop models for predicting the environmental impact of each factor on survival and growth of P. oxalicum and to know their ability to grow and survive in different environments. Two parameters are evaluated in the soil samples: i) the survival of Penicillium spp. by counting the number of colony forming units in semi-selective medium and ii) growth (biomass) of PO212 by real-time PCR. P. oxalicum grows and survives better in drought conditions regardless of temperature and soil type. P. oxalicum grows and survives more in sandy loam soils with low organic matter content, higher pH and lower availability of phosphorus and nitrogen. Survival and growth of P. oxalicum negatively correlates with the availability of water and positively with the organic content. Only survival also correlated positively with pH. Moreover, trials are carried out into commercial orchards soils with different physic-chemical properties and different environmental conditions TO STUDY THE ESTABLISHMENT, SURVIVAL, VERTICAL DISPERSION AND HORIZONTAL SPREAD OF PO212. P. oxalicum 212 can persist and survive at very low levels in soil one year after its release. The size of the PO212 population after its release into the tested natural soils is similar to that of indigenous Penicillium spp. Furthermore, the vertical dispersion and horizontal spread of PO212 is limited in different soil types. The introduction of P. oxalicum in a natural environment not only involves their action on the target organism, the pathogen, but also on other indigenous microorganisms. TO ASSESS THE EFFECT OF P. oxalicum APPLICATION ON SOIL INDIGENOUS FUNGAL COMMUNITIES in two commercial orchards, soil samples are analyzed by Denaturing Gradient Gel Electrophoresis polyacrylamide (DGGE). Samples are taken from soil at two depths (5 and 10 cm) and four dates from the application of P. oxalicum 212 (0, 75, 180 and 365 days). DGGE analysis shows that differences are observed between sampling dates and are independent of the treatment of P. oxalicum applied and the depth. BCA application does not affect the fungal population of the two soil analyzed. Sequence analysis of the DGGE bands confirms previous findings and to identify the presence of BCA on soils. The presence of P. oxalicum in soil is especially related to environmental factors such as humidity. Therefore, we conclude that the 212 of strain Penicillium oxalicum can be considered an optimum BCA, since it is environmentally competitive and effective against a broad spectrum of diseases and does not have any negative effect on soil non-target fungi communities.